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Cavitation instability in rubber with consideration

of failure
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Cavitation instability in rubber is investigated by examining spherical void expansion in
rubber particles under dead-load traction conditions. Spherical symmetry is assumed to
simplify the governing equations in order to gain qualitative understanding of cavitation
phenomenon. A simple strain failure criterion for rubber is proposed to demonstrate the
effect of rubber failure on cavitation phenomenon. When the strain failure criterion is
considered, the results show that, as in neo-Hookean materials, critical cavitation stresses
exist for Mooney-Rivlin materials and for nonlinearly elastic materials characterized by a
third-order strain energy function. C© 2001 Kluwer Academic Publishers

1. Introduction
Cavitation in rubber particles plays an important role in
the toughening mechanism of rubber-modified plastics.
It has been well known that addition of rubber particles
to plastics can significantly increase the fracture tough-
ness of the plastics. Yee and Pearson [1], Pearson and
Yee [2, 3], and Yeeet al.[4] observed that when rubber-
modified epoxies were subject to loading, the rubber
particles in the crack tip region were cavitated before
noticeable plastic deformation of the matrix, and a mas-
sive shear yielding of the neighboring matrix followed
the cavitation of rubber particles. Recently, Sue and
Yee [5] investigated the influence of rubber particles
and of pre-existing voids on the toughening of plastics
and concluded that the major difference between pre-
existing holes and cavitation in the rubber particles lies
on the sudden buildup of the octahedral shear stress
upon the cavitation of rubber particles in the crack tip
region. Many research works have been conducted to
understand the effects of rubber cavitation on tough-
ening of plastics, for example, see Lazzeri and Buck-
nall [6, 7], Bucknall and Lazzeri [8], Huang and Kin-
loch [9], Steenbrinket al.[10], Steenbrink and Van der
Giessen [11], Chen and Mai [12], Jansenet al.[13] and
Jeong and Pan [14].

Jeong and Pan [14] investigated the deformation pat-
tern near the tips of cracks in rubber-modified plas-
tics. They assumed that the rubber particles were cav-
itated early in the deformation history and adopted a
modified Gurson’s yield criterion with consideration
of the pressure sensitivity of the matrix to describe
the plastic behavior of the rubber-modified plastics.
Jeong and Pan [14] found that the computational results
with the use of the void model to represent cavitated
rubber particles in plastics agree well with the corre-
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sponding experimental results. As mentioned earlier,
cavitation occurs early in rubber particles during the
deformation history from experimental observations.
Chang and Pan [15] examined the load-carrying ca-
pacity of rubber-modified plastics in order to under-
stand the implications of the use of the void model to
represent cavitated rubber particles in plastics. They
found that rubber-modified plastics would have unreal-
istic large load-carrying capacity and voids grow quite
slowly with increasing stress under spherically sym-
metrical loading conditions when higher-order strain
energy functions are considered for rubber. This con-
tradicts the experimental observations where cavities in
rubber particles grows enormously near crack tips.

The theoretical model under spherically symmetrical
conditions in Chang and Pan [15] is used to shed light
on the material behavior near a crack tip under large hy-
drostatic tension conditions. The unrealistic large load-
carrying capacity from using higher-order strain energy
functions for rubber leads to an assumption of a failure
criterion in Chang and Pan [15], where beyond certain
strains the molecular chains in rubber break under biax-
ial stretching conditions. With this failure criterion, the
load-carrying capacity of rubber-modified plastics is in
agreement with the void model, and, consequently, the
deformation pattern near crack tips can be reasonably
explained by the fracture mechanics models (Jeong and
Pan [14] and Al-Abduljabbar and Pan [16]). Compu-
tational models have been used to investigate the ef-
fects of rubber particles, rubber particles with finite
size voids, and voids of equivalent particle sizes on the
load carrying capacity and toughening of the plastic ma-
trices (Huang and Kinloch [9], Steenbrinket al. [10],
Steenbrink and Van der Giessen [11], Chen and
Mai [12], Jeong and Pan [14], and Chang and Pan [15]).
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However, in this paper, we concentrate on the cavitation
instability and load carrying capacity of rubber itself.

There have been many research works on cavitation
instability in rubber and metals. In general, cavitation
instability occurs when the stress levels are sufficiently
high such that the void expansion rate becomes in-
finitely large. Examples of material failure due to cav-
itation can be found in rubber (Gent and Lindley [17])
and in metals (Ashbyet al. [18]), where voids grow
enormously under the given conditions. Early work on
cavitation instabilities is summarized in Hill [19]. The
cavitation problem has been investigated in the context
of nonlinear elasticity by Ball [20]. Ball studied a class
of bifurcation problems in which a spherical void forms
at the center of a sphere of nonlinearly elastic material
under surface tractions or displacements.

An alternative interpretation of cavitation instability
in terms of the growth of a pre-existing microvoid has
been given by Horgan and Abeyaratne [21]. An excel-
lent review of cavitation in nonlinearly elastic solids
can be found in Horgan and Polignone [22]. For cavi-
tation in elastic-plastic materials, Huanget al.[23] and
Tvergaardet al. [24] examined cavitation instabilities
in Mises materials under both spherically symmetric
and axisymmetric conditions. Hou and Abeyaratne [25]
examined the cavitation in elastic and elastic-plastic
solids under non-symmetric loading and presented cav-
itation criteria in terms of the principal true stresses for
neo-Hookean materials and elastic-plastic power-law
materials. Chang and Pan [15] studied the load-carrying
capacity of rubber-modified plastics with pre-existing
voids in rubber particles with consideration of rubber
failure at large strains. Williams and Schapery [26],
Gent and Wang [27] and Lazzeri and Bucknall [6, 7]
analyzed cavitation in rubber from the viewpoint of
energy release rate.

Gent and Lindley [17] obtained the critical remote
surface traction for a cavity in an infinitely thick spher-
ical shell under radial traction conditions with the strain
energy functions for neo-Hookean materials and mod-
ified Mooney-Rivlin materials. Their critical surface
radial tractions are in the order of the elastic modulus
and agree with those observed in the internal rupture of
a thin rubber layer between two metal cylinders under
tensile loads. As indicated by Gent and Lindley [17],
the critical tractions are slightly lower with consid-
eration of the failure of rubber at stretch ratios be-
tween 4 and 10 under biaxial stretching conditions.
The theoretical framework of Ball [20] and Horgan and
Abeyaratne [21] have provided insight into cavitation
in nonlinearly elastic materials. However, the results
of Hogan and Polignone [22] indicate that from the
mathematical viewpoint, the critical radial tractions for
the cavity become unbounded for Mooney-Rivlin ma-
terials or nonlinearly elastic materials characterized by
higher-order strain energy functions.

One can imagine that for a given set of experimental
stress-stretch ratio data under various loading condi-
tions such as uniaxial tensile, biaxial tensile and sim-
ple shear loading conditions, a high-order strain energy
function should have more flexibility to fit the exper-
imental data under these various loading conditions.

Neo-Hookean strain energy function may be used to fit
some experimental data under various loading condi-
tions, but cannot be the best choice to fit all data un-
der various loading conditions, especially under large
stretching conditions. Note that multiple coefficients in
higher-order strain energy functions must be carefully
selected as indicated in Kao and Razgunas [28].

For a given rubber, higher-order strain energy func-
tions are supposed to be more accurate in character-
izing stress-stretch ratio relations under more general
multiaxial loading conditions. According to Hogan and
Polignone [22], cavitation instability disappears when
higher-order strain energy functions are used. For a
given rubber, cavitation instability should not depend
upon the selection of strain energy functions. Cavita-
tion instability either does or does not exist. However,
according to Hogan and Polignone [22], cavitation in-
stability exists if a lower-order strain energy function is
used whereas cavitation instability does not exist when
a supposedly more accurate higher-order strain energy
function is used. From this viewpoint, the mathemati-
cal framework to treat cavitation instability must be re-
examined or re-interpreted to reflect the physical reality.
Therefore, a strain failure criterion at large strains due
to breaking of molecular chains is adopted in this pa-
per to investigate cavitation instability in rubber when
higher-order strain energy functions are used.

2. Constitutive modeling of rubber
Let us consider that a material point with the initial
Cartesian coordinatesXi is displaced to a new position
with the Cartesian coordinatesxi in an isotropic elastic
solid. The deformation gradient tensor is defined as

Fi j = ∂xi

∂X j
, (1)

and the left Cauchy-Green strain tensor is defined as

Bi j = Fik Fjk . (2)

The invariants of the tensorBi j are

I1 = Bii (3)

I2 = 1

2
(Bii Bj j − Bi j Bi j ) (4)

I3 = 1

6
ei jk epqr Bip Bjq Bkr (5)

whereei jk is the permutation symbol.
It is generally accepted that under static loading con-

ditions, rubbers are considered as isotropic hyperelastic
incompressible materials. The strain energy function
per unit undeformed volume for isotropic hyperelastic
materials is generally expressed as a function of the
three invariants,I1, I2 and I3. The third invariantI3 is
identically equal to 1 because of the material incom-
pressibility. Therefore, the strain energy function per
unit undeformed volume for isotropic hyperelastic in-
compressible materials can be expressed in terms ofI1
and I2 as
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W = W(I1, I2). (6)

Various forms of strain energy functions for Equation 6
have been suggested for incompressible materials.

We adopt a third-order strain energy function inves-
tigated by James, Green and Simpson [29] and James
and Green [30]:

W = C10(I1− 3)+ C01(I2− 3)+C11(I1− 3)(I2− 3)

+C20(I1− 3)2+ C30(I1− 3)3. (7)

Note that Equation 7 reduces to the strain energy func-
tion for Mooney-Rivlin materials whenC11=C20=
C30= 0 and reduces to that for neo-Hookean materials
whenC01=C11=C20=C30 = 0. The components of
the Cauchy stress,σi j , can be derived fromW as [31]

σi j = −pδi j + 2
∂W

∂ I1
Bi j − 2

∂W

∂ I2
(B−1)i j , (8)

wherep is the hydrostatic pressure.
The material constantsCi j in Equation 7 are deter-

mined by fitting to the test data. Here, we consider a
rubber with the material constants [32, 33]

C10 = 1.008× 10−1 MPa (9)

C01 = 1.612× 10−1 MPa (10)

C11 = 1.338× 10−3 MPa (11)

C20 = 6.206× 10−4 MPa (12)

C30 = 6.206× 10−9 MPa. (13)

We also consider a Mooney-Rivlin material with the
constants [34]

C10 = 0.550 MPa (14)

C01 = 0.138 MPa (15)

C11 = C20 = C30 = 0. (16)

In addition, we consider a neo-Hookean material with
the constants

C10 = 0.5 MPa (17)

C01 = C11 = C20 = C30 = 0. (18)

For the neo-Hookean material, the only nonzero con-
stantC10 is related to the shear modulus of rubber,G,
asC10=G/2. The values ofG for rubbers generally
lie between 0.2 and 1.0 MPa.

Note that the material constantsCi j are determined
by fitting to the experimental data. When the defor-
mation is larger than the deformation range of the ex-
periment, unrealistic stress values at large strains can
be predicted from these material constants. These con-
stants may differ for the same material by fitting to the
experimental data for different deformation ranges and
loading conditions. However, a higher-order strain en-
ergy function should generally give a more accurate de-

Figure 1 The stresses as functions of the stretch ratio for three non-
linearly elastic materials. Curves NH, MR, and JGS represent the NH,
MR, and JGS materials under uniaxial tensile loading conditions, re-
spectively. Curves BNH, BMR, and BJGS represent the NH, MR, JGS
materials under equal biaxial tensile loading conditions, respectively.

scription of the material behavior at large strains under
multiaxial loading conditions. The selection of the three
representative rubbers with these material constants is
to investigate the cavitation phenomena in these rub-
bers with and without consideration of rubber failure at
large strains. In the following, we denote the material
with the material constants in Equations 9 to 13 as the
JGS material. We denote the Mooney-Rivlin material
with the material constants in Equations 14 to 16 as
the MR material. We denote the neo-Hookean material
with the material constants in Equations 17 and 18 as
the NH material.

In Fig. 1, the applied stresses as functions of the
stretch ratio under uniaxial tensile loading and equal
biaxial tensile loading for the JGS, MR, and NH mate-
rials are plotted. In the figure, the curves for the JGS,
MR, and NH materials under uniaxial tensile loading
are denoted by JGS, MR, and NH, respectively. The
curves for the JGS, MR, and NH materials under equal
biaxial tensile loading are denoted by BJGS, BMR, and
BNH, respectively. Since the material elements on the
void surface are subject to equal biaxial loading condi-
tions (due to spherical symmetry), curves BJGS, BMR,
and BNH in Fig. 1 represent the constitutive relations
for these material elements and therefore have impor-
tant implications on the modeling of void expansion
in rubber particles. It should be noted that the neo-
Hookean material (the NH material) has almost the
same response at large stretch ratios under both uni-
axial and biaxial tensile loading conditions, as shown
by curves NH and BNH. The JGS and MR materials
are very stiff under equal biaxial loading conditions. For
example, curves BMR and BJGS in Fig. 1 show that the
stresses at the stretch ratioλ= 4 are about 80 MPa and
120 MPa, which are larger than the yield stresses of the
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typical plastic matrices in which the rubber particles are
embedded for toughening. The stresses increase very
sharply when the stretch ratioλ becomes larger than 4.

3. Governing equations
We now examine void expansion in rubber particles un-
der spherically symmetric loading conditions. Fig. 2a
depicts the undeformed configuration of a spherical
rubber particle with a void. The rubber particle has the
initial external radiusr0 and the initial void radiusrb.
Fig. 2b schematically shows the deformed configura-
tion of the rubber particle. In Fig. 2b, the external ra-
dius becomesR0 and the void radius becomesRb after
a dead-load radial tractionp0 is applied at the outer
boundary. The dead-load tractionp0 is related to the
radial stressσR at R= R0 based on the deformed con-
figuration as

σR(R= R0) = p0

(
r0

R0

)2

, (19)

as shown in Fig. 2b.

Figure 2 A void in a spherical rubber particle under radial dead-load
traction p0. (a) undeformed configuration, (b) deformed configuration.

We consider a spherical coordinate system with the
three coordinatesR,θ , andφ. The origin of the spherical
coordinate system is located at the center of the void.
Due to symmetry, the stretch ratio in the hoop direction,
λ, can be simply represented as

λ = R

r
, (20)

wherer andR represents the radial coordinate of a ma-
terial point before and after deformation, respectively.
Due to symmetry, the off-diagonal components ofB are
zero. The diagonal components ofB are denoted asBR,
Bθ , andBφ. From Equations 1 and 2, we have

Bθ = Bφ = λ2. (21)

The incompressibility gives

I3 = BRBθBφ = 1. (22)

Then,BR can be found, by using (21) and (22), as

BR = λ−4. (23)

Substituting Equations 21 and 23 into Equation 8 gives
the relations between the stresses and the stretch ratio
λ as

σR = −p− 4C11λ
6+ (−2C01+ 6C11)λ

4+ 24C30

+ (−72C30+ 8C20)λ
−2+ (−6C11+ 54C30

+ 2C10− 12C20)λ
−4+ (4C11+ 24C30)λ

−6

+ (4C20− 36C30)λ
−8+ 6C30λ

−12 (24)

σθ = −p+ (2C11+ 24C30)λ
6+ (−72C30+ 8C20)λ

4

+ (−6C11+ 54C30+ 2C10− 12C20)λ
2+ 24C30

+ (4C20− 36C30− 2C01+ 6C11)λ
−2

+ (6C30− 2C11)λ
−6 (25)

σφ = σθ . (26)

Herep will be determined by the equilibrium equation
and the boundary conditions, and is a function ofR.
The off-diagonal stress components are equal to 0.

We now begin to solve for the stress distribution
within the rubber particle. The equilibrium equation
is

dσR

d R
+ 2

R
(σR− σθ ) = 0. (27)

The boundary conditions require

σR = 0 at R= Rb. (28)

Substituting Equations 24 and 25 into 27 gives
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dσR

d R
= 2

R

{
(6C11+ 24C30)λ

6+ (−72C30+ 8C20

+ 2C01− 6C11)λ
4+ (−6C11+ 54C30

+ 2C10− 12C20)λ
2+ (−4C20+ 36C30

− 2C01+ 6C11)λ
−2+ (6C11− 54C30

− 2C10+ 12C20)λ
−4+ (−18C30− 6C11)λ

−6

+ (−4C20+ 36C30)λ
−8− 6C30λ

−12} (29)

The volume conservation due to incompressibility gives

R3− R3
b = r 3− r 3

b . (30)

Therefore, the stretch ratioλ in Equation 29 can be
expressed as

λ = R

r
= R(

R3− R3
b + r 3

b

)1/3 . (31)

SubstitutingR= R0 into Equation 30 gives the expan-
sion ratio of the outer radius of the rubber particle as

R0

r0
=
[

1−
(

rb

r0

)3

+
(

Rb

r0

)3
] 1

3

. (32)

Note that all the length scales are normalized byr0 here.
Also note that in Equation 32, the initial radius of the
void rb/r0 is given as an input. For a given final void
radiusRb/r0, the governing equation (Equation 29) can
be integrated from the deformed inner radiusR= Rb

with the initial value ofσR= 0 to the deformed outer
radiusR0 which can be determined by Equation 32. At
eachR, p can then be determined from Equation 24.
Oncep is determined,σθ can be determined from Equa-
tion 25. The dead-load tractionp0 at R= R0 can be
obtained from Equation 19.

For a neo-Hookean material with the strain energy
function

W = G

2
(I1− 3), (33)

the critical dead-load traction can be obtained (Gent
and Lindley [17] and Ball [20]) as

pcr = 5G

2
. (34)

Also, Horgan and Polignone [22] obtained the relation
between the applied traction and the current void radius
by a Taylor expansion as

p0 = pcr + k

(
Rb

r0

)3

+ o
(
R3

b

)
, (35)

where

k = 2

3
(pcr − 2G). (36)

From Equation 34 andG= 2C10, we obtain pcr =
2.5 MPa andk= 1/3 MPa for the NH material with
the material constants in Equation 17.

It should be noted that the bifurcation model of cav-
itation can be successfully used to predict the critical
traction for the internal rupture of the rubber observed
by Gent and Lindley [17] when the rubber is modeled
as a neo-Hookean material. The criterion for materials
with strain energy functions to have a finite critical trac-
tion is given in Chou-Wang and Horgan [35], Polignone
and Horgan [36], and Horgan and Polignone [22]. For
example, when the strain energy function of the rubber
is characterized by that of the Mooney-Rivlin materi-
als or other higher-order strain energy functions [22],
the critical traction becomes unbounded. However, the
Mooney-Rivlin and other higher-order strain energy
functions are considered to give more accurate de-
scription of the constitutive behavior of rubber at large
strains. Therefore, it seems that a modification to the
bifurcation approach is needed to reflect the fact that
rubber cannot be extended to infinite stretch ratio.

4. Results
Because a rubber material element cannot be extended
to infinite stretch ratio, a failure mechanism at large
strains is considered. Note that the material elements
on the void surface of the rubber particle are under
plane stress, equal biaxial loading conditions. For in-
vestigation of the effects of a failure mechanism on
cavitation, we adopt a simple failure criterion such that
rupture occurs when the stretch ratioλ reaches a critical
value under plane-stress, equal biaxial stretching con-
ditions. Note that the failure stretch ratios are different
for different rubbers. The failure stretch ratio depends
upon the degree of cross-linking, stretch rate, and tem-
perature. The values of the stretch ratio at failure in
equibiaxial tension for vulcanised natural rubber are
between 3.5 and 4.0 [6].

Here we just takeλ= 4 as the failure stretch ratio
for the three rubbers to explore the implications of a
failure criterion on cavitation phenomenon. Therefore,
when the stretch ratioλ of the material elements on the
void surface of the rubber particle reaches the critical
value of 4, the rubber material elements fail. In the pre-
existing void model of cavitation, no limit is assumed
on the maximum strain that the material can experience.
Therefore, for an initially infinitesimal void growing to
a finite size, the stretch ratios of the material elements
on the void surface become infinite. Now, with consid-
eration of a simple strain failure criterion, we exam-
ine the cavitation phenomena in the three rubbers char-
acterized by different strain energy functions. The re-
sults for the neo-Hookean material, the Mooney-Rivlin
material and the JGS material are shown in Figs 3–5,
respectively.

For the neo-Hookean material with the material con-
stants in Equations 17 and 18, the dead-load tractions
(p0) as functions of the normalized current void size
(Rb/r0) are shown as dash curves in Fig. 3 for various
normalized initial void sizes (rb/r0). Curve A repre-
sents Equation 35 which is an approximate relation for
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Figure 3 The relation between the applied tractionp0 and the current
void sizeRb/r0 for a neo-Hookean material. The dashed curves represent
the expansion ratios of the void with different initial sizes under dead-
load traction conditions. Curve A represents an approximate relation for
an initially infinitesimal void with no consideration of rubber failure.
Curve B represents the critical tractions for various initial void sizes
with consideration of rubber failure atλ= 4.

Figure 4 The relation between the applied tractionp0 and the current
void sizeRb/r0 for a Mooney-Rivlin material. The dashed curves rep-
resent the expansion ratios of the void with different initial sizes under
dead-load traction conditions. The solid curve represents the critical trac-
tions for various initial void sizes with consideration of rubber failure at
λ= 4.

an initially infinitesimal void. As shown in Fig. 3, when
the normalized initial void sizerb/r0 approaches to 0,
the dashed curves approach to curve A. When the strain
failure criterion atλ = 4 is considered, a critical point
at each dash curve in Fig. 3 can be found to represent the
critical traction for the given initial void size. A solid

Figure 5 The relation between the applied tractionp0 and the current
void sizeRb/r0 for a JGS material characterized by a third-order strain
energy function. The dashed curves represent the expansion ratios of the
void with different initial sizes under dead-load traction conditions. The
solid curve represents the critical tractions for various initial void sizes
with consideration of rubber failure atλ= 4.

curve, Curve B, can be drawn by connecting the critical
points, corresponding to the failure of the void surface
material, of all dash curves for various initial void sizes.
In other words, curve B represents the critical tractions
for various initial void sizes.

When we examine the trend of curve B, we can iden-
tify that the critical traction for an initially small void is
2.0 MPa with consideration of the failure criterion. This
critical traction represents the critical condition for an
infinitesmal void when the rubber on the void surface
fails at the large stretch ratio. This value is lower than
2.5 MPa predicted by the bifurcation model of cavita-
tion. Also, curve B shows that asrb/r0 approaches to 1,
the tractionpo becomes 0 atRb/r0= 4. This can be ex-
plained by considering a spherical rubber shell with
an infinitesmal thickness subject to radial expansion.
The thin shell fails when the stretch ratio of the rubber
reaches the critical value of 4 atR0/r0 ≈ Rb/r0= 4.

For the Mooney-Rivlin material with the material
constants given in Equations 14 to 16, the dead-load
tractions (p0) as functions of the normalized current
void size (Rb/r0) are shown as dash curves in Fig. 4
for various normalized initial void sizes (rb/r0). For
the Mooney-Rivlin material, the critical traction is un-
bounded according to the bifurcation analysis in [22].
As shown in Fig. 4, when the normalized initial void
sizerb/r0 becomes small, the dash curves tend to the
vertical lineRb/r0= 0. Therefore, an infinitesimal void
cannot suddenly grow in the Mooney-Rivlin material
when no failure criterion is considered. As for the
neo-Hookean material, when the strain failure crite-
rion atλ= 4 is considered, a solid curve can be drawn
in Fig. 4 to represent the critical tractions for various
normalized initial void sizes, where the stretch ratioλ
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of the void surface material element meets the failure
criterion atλ= 4. As the normalized initial void size
becomes small, the solid curve approaches to a critical
traction at 4.1 MPa.

For the JGS material characterized by the material
constants in Equations 9 to 13, the dead-load tractions
(p0) as functions of the normalized current void size
(Rb/r0) are shown as dash curves in Fig. 5 for vari-
ous normalized initial void sizes (rb/r0). For the JGS
material, the critical traction should be unbounded ac-
cording to the bifurcation analysis in [22]. As shown
in Fig. 5, when the normalized initial void sizerb/r0
becomes small, the dash curves tend to the vertical
line Rb/r0= 0. Therefore, an infinitesimal void can-
not suddenly grow in the JGS material when no failure
criterion is considered. As for the neo-Hookean and
Mooney-Rivlin materials, when the strain failure crite-
rion atλ= 4 is considered, a solid curve can be drawn
in Fig. 5 to represent the critical tractions for various
normalized initial void sizes. As the normalized initial
void size becomes small, the solid curve approaches to
a critical traction near 3.0 MPa.

The dead-load tractionsp0 as functions of the nor-
malized current void sizeRb/r0 are shown in Figs 3–5
for the NH, MR, and JGS materials, respectively. When
we design for the maximum dead-load radial traction
for a spherical thick shell with consideration of the fail-
ure criterion, the best design will be the cases with the
normalized void sizerb/ro from 0.4 to 0.7, where the
dead-load radial tractions are maximized.

For a small void in the rubber particle, when the outer
radius increases, the stretch ratio of the void surface el-
ement increases and meets the failure criterion. Then
a thin layer of the surface element fails and loses the
load-carrying capacity. As the radial displacement con-
tinues to increase, the stretch ratio of the next thin layer
of rubber increases and fails. When the radial displace-
ment further increases, more inner portion of the rub-
ber particle fails and loses the load-carrying capacity.
When all the rubber material elements are stretched and
failed, the particle completely loses the load-carrying
capacity and the radial traction becomes zero. This con-
cept of gradual loss of load-carrying capacity of mate-
rial elements or structures has been adopted in fracture
mechanics and material modeling research, for exam-
ple, see Jeong and Pan [14] on near-tip deformation
pattern in rubber-modified epoxies and Tvergaard and
Needleman [37] on ductile fracture in tensile bars. Of
course, we assume a highly idealized deformation mode
here because a spherically symmetrical model is needed
to explore the post-bifurcation behavior of the rubber
particle. We can simulate numerically the small void
growth model as discussed above. However, there is
another way to get the post-bifurcation behavior of the
rubber particle with an infinitesmal void.

Fig. 6 shows the undeformed and deformed config-
urations of the rubber particle. In the figure, the rubber
particle deformed radiusRo becomes sufficiently large
so that the stretch ratio of the inner portion of the rub-
ber particle is larger than the failure stretch ratioλ= 4.
Denote the deformed radius of the material with the
failure stretch ratioλ= 4 asRf . The stretch ratio of the

Figure 6 A void in a spherical rubber particle under radial traction.
(a) undeformed configuration, (b) deformed configuration. In (b), the
stretch ratioλ equal to the failure stretch ratio of 4 at the deformed
radiusRf . The inner portion of the particle has the stretch ratio larger
than 4 and has no load-carrying capacity. The outer portion of the particle
has the stretch ratio less than 4 and carries the load. In (a),r f represents
the undeformed radius corresponding toRf .

material with the current radiusR less thanRf is larger
thanλ= 4. When the stretch ratio is larger or equal to 4,
the rubber material fails. Therefore the inner portion of
the particle has failed and has no load-carrying capac-
ity. The load will then be carried by the outer portion of
the particle. Consequently, the load-carrying capacity
of the rubber particle at the currentRo can be obtained
from the load-carrying capacity of the particle with the
initial void radiusr f which is the undeformed radius
corresponding toRf .

Therefore, the dead-load traction of the rubber parti-
cle with an infinitesmal void should follow the curves
for the critical tractions for various initial void sizes
shown in Figs 3–5. In fact, Curve B in Fig. 3 and the
solid curves in Figs 4 and 5 represent the plots ofp0’s
as functions ofRf /ro for the rubber particle with an
infinitesmal void. Based on the curves for the criti-
cal tractions and the incompressibility condition, the
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Figure 7 The dead-load tractionsp0 for the particle with an infinitesimal
void are plotted as functions of the normalized particle sizeRo/ro for
the neo-Hookean, MR and JGS materials with consideration of rubber
failure atλ= 4.

dead-load tractions for an infinitesmal void are plotted
as functions of the normalized particle sizeRo/ro for
the NH, MR and JGS materials in Fig. 7. Note that the
normalized deformed particle sizeRo/ro is used as the
abscissa. It is easy to use the incompressibility condi-
tion to change the plot fromp0 as a function ofRo/ro to
p0 as a function ofRb/ro, as in most cavitation research
works. However, we plotp0 as a function ofRo/ro be-
cause the inner portion of the particle fails and carries
no load. Then it makes sense to plotp0 as a function
of Ro/ro. Nevertheless, the plots as functions ofRo/ro

are quite similar to those as functions ofRb/ro.
As shown in Fig. 7, these curves represent the post-

bifurcation behaviors for the rubber particle containing
an infinitesmal void with consideration of the failure
criterion. Note that the dead-load tractions approach to
finite values whenRo/ro approaches to 1 (orRb/ro ap-
proaches to 0) as indicated by the numerical results.
The dead-load tractions approach to zero asRo/ro ap-
proaches to the failure stretch ratioλ= 4. As shown in
the the figure, there are maximum dead-load tractions
for the three materials. Beyond these maximum dead-
load tractions, no solution can be found according to
this rate-independent, quasi-static approach.

The numerical results shown in Fig. 7 indicate the ex-
istence of cavitation stress for the three materials with
consideration of the failure criterion. The existence of
cavitation stress can be explained by the bifurcation
approach of Horgan and Abeyaratne [21]. Horgan and
Polignone [22] indicate that the existence of cavitation
stress depends upon the behavior of the strain energy
function at large stretch ratios. When the material is
sufficiently soft at large stretch ratios, cavitation stress
exists. When a failure criterion is assumed at finite
stretch ratios, the material has zero load-carrying ca-

pacity and can be viewed as an extremely soft material
at the stretch ratios larger than the failure stretch ratio.
Therefore, for both lower-order and higher-order strain
energy functions, cavitation stress exists when a failure
criterion is assumed at a finite stretch ratio.

From the mathematical viewpoint, Equation 2.41 for
cavitation stresspcr in Horgan and Polignone [22] can
be used to explain the numerical results shown in this
paper. However, in order to make a direct use of the
equation, the strain failure criterion should be modified
slightly. In our strain failure criterion, the load-carrying
capacity drops from a finite value to zero at the failure
stretch ratio. However, in the modified strain failure
criterion, the load-carrying capacity of the rubber in-
creases to the maximum and then gradually decreases
to zero near the failure stretch ratio so that the equa-
tion in Horgan and Polignone [22] can be integrated.
This gradual loss of the load-carrying capacity is quite
similar to that in the cohesive zone model extensively
used in fracture mechanics (for example, see Kanninen
and Popelar [38]). The cavitation stress according to
the equation is obtained by integrating from 1 to in-
finity. With the failure criterion, the cavitation stress is
obtained by integrating from 1 to a finite failure stretch
ratio. Therefore, for the neo-Hookean material, the cav-
itation stress 2.0 MPa which is less than the value of
2.5 MPa without consideration of the failure criterion.
When the failure stretch ratio increases to infinity, the
cavitation stress without consideration of the failure
criterion is recovered as indicated by the equation. For
higher-order strain energy functions, the values of cav-
itation stresses will depend on failure stretch ratios and
strain energy functions. For the MR and JGS materials,
the cavitation stresses are at 4.1 and 3.0 MPa, respec-
tively. Note that the biaxial stretching behaviors for the
MR and JGS materials are much stiffer than that for the
neo-Hookean material, as shown in Fig. 1. Therefore,
the cavitation stresses for the MR and JGS materials are
larger than that for the neo-Hookean material with the
same failure stretch ratio. This can also be explained by
the equation qualitatively.

In this paper, no physical dimension is given to the
initial void sizerb. Surface energy becomes important
as the physical dimension of the void becomes small. As
shown in Gent and Wang [27], the critical stretch ratio
depends upon the physical dimension of the void (or
crack). However, their results show that when the void
size decreases, the critical stretch ratio approaches to a
constant. Here we have selected the critical stretch ratio
as 4. Other values can be selected. Even we can select
the critical stretch ratio as a function of the physical
dimension of the void. But the qualitative results will
be the same as those presented here.

5. Conclusions
In this paper, we investigate the spherical void ex-
pansion in spherical rubber particles under dead-load
traction conditions. Spherical symmetry is assumed to
simplify the governing equations in order to gain qual-
itative understanding of the cavitation phenomenon.
We adopt a simple strain failure criterion for rubber
at large strains. When a simple strain failure criterion is
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employed, critical cavitation stresses of the order of the
shear modulus exist consistently in nonlinearly elastic
materials with different strain energy functions, in con-
trast to the results obtained without consideration of a
failure mechanism.
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