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Cavitation instability in rubber with consideration
of failure
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Cavitation instability in rubber is investigated by examining spherical void expansion in
rubber particles under dead-load traction conditions. Spherical symmetry is assumed to
simplify the governing equations in order to gain qualitative understanding of cavitation
phenomenon. A simple strain failure criterion for rubber is proposed to demonstrate the
effect of rubber failure on cavitation phenomenon. When the strain failure criterion is
considered, the results show that, as in neo-Hookean materials, critical cavitation stresses
exist for Mooney-Rivlin materials and for nonlinearly elastic materials characterized by a
third-order strain energy function. © 2001 Kluwer Academic Publishers

1. Introduction sponding experimental results. As mentioned earlier,
Cavitation in rubber particles plays an important role incavitation occurs early in rubber particles during the
the toughening mechanism of rubber-modified plasticsdeformation history from experimental observations.
It has been well known that addition of rubber particlesChang and Pan [15] examined the load-carrying ca-
to plastics can significantly increase the fracture toughpacity of rubber-modified plastics in order to under-
ness of the plastics. Yee and Pearson [1], Pearson arstiand the implications of the use of the void model to
Yee [2, 3], and Yeet al.[4] observed that when rubber- represent cavitated rubber particles in plastics. They
modified epoxies were subject to loading, the rubbefound that rubber-modified plastics would have unreal-
particles in the crack tip region were cavitated beforestic large load-carrying capacity and voids grow quite
noticeable plastic deformation of the matrix, and a masslowly with increasing stress under spherically sym-
sive shear yielding of the neighboring matrix followed metrical loading conditions when higher-order strain
the cavitation of rubber particles. Recently, Sue ancenergy functions are considered for rubber. This con-
Yee [5] investigated the influence of rubber particlestradicts the experimental observations where cavities in
and of pre-existing voids on the toughening of plasticsrubber particles grows enormously near crack tips.
and concluded that the major difference between pre- The theoretical model under spherically symmetrical
existing holes and cavitation in the rubber particles liesconditions in Chang and Pan [15] is used to shed light
on the sudden buildup of the octahedral shear stregsn the material behavior near a crack tip under large hy-
upon the cavitation of rubber particles in the crack tipdrostatic tension conditions. The unrealistic large load-
region. Many research works have been conducted toarrying capacity from using higher-order strain energy
understand the effects of rubber cavitation on toughfunctions for rubber leads to an assumption of a failure
ening of plastics, for example, see Lazzeri and Buck<criterion in Chang and Pan [15], where beyond certain
nall [6, 7], Bucknall and Lazzeri [8], Huang and Kin- strains the molecular chains in rubber break under biax-
loch [9], Steenbrinlet al.[10], Steenbrink and Van der ial stretching conditions. With this failure criterion, the
Giessen [11], Chen and Mai [12], Jansgml.[13] and  load-carrying capacity of rubber-modified plastics is in
Jeong and Pan [14]. agreement with the void model, and, consequently, the
Jeong and Pan [14] investigated the deformation patdeformation pattern near crack tips can be reasonably
tern near the tips of cracks in rubber-modified plas-explained by the fracture mechanics models (Jeong and
tics. They assumed that the rubber particles were cawan [14] and Al-Abduljabbar and Pan [16]). Compu-
itated early in the deformation history and adopted dational models have been used to investigate the ef-
modified Gurson’s yield criterion with consideration fects of rubber particles, rubber particles with finite
of the pressure sensitivity of the matrix to describesize voids, and voids of equivalent particle sizes on the
the plastic behavior of the rubber-modified plastics.load carrying capacity and toughening of the plastic ma-
Jeong and Pan [14] found that the computational resultices (Huang and Kinloch [9], Steenbriwek al. [10],
with the use of the void model to represent cavitatedSteenbrink and Van der Giessen [11], Chen and
rubber patrticles in plastics agree well with the corre-Mai[12], Jeong and Pan [14], and Chang and Pan [15]).
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However, in this paper, we concentrate on the cavitatioiNeo-Hookean strain energy function may be used to fit
instability and load carrying capacity of rubber itself. some experimental data under various loading condi-
There have been many research works on cavitatiotions, but cannot be the best choice to fit all data un-
instability in rubber and metals. In general, cavitationder various loading conditions, especially under large
instability occurs when the stress levels are sufficientlystretching conditions. Note that multiple coefficients in
high such that the void expansion rate becomes inhigher-order strain energy functions must be carefully
finitely large. Examples of material failure due to cav- selected as indicated in Kao and Razgunas [28].
itation can be found in rubber (Gent and Lindley [17]) For a given rubber, higher-order strain energy func-
and in metals (Ashbet al. [18]), where voids grow tions are supposed to be more accurate in character-
enormously under the given conditions. Early work onizing stress-stretch ratio relations under more general
cavitation instabilities is summarized in Hill [19]. The multiaxial loading conditions. According to Hogan and
cavitation problem has been investigated in the contexPolignone [22], cavitation instability disappears when
of nonlinear elasticity by Ball [20]. Ball studied a class higher-order strain energy functions are used. For a
of bifurcation problems in which a spherical void forms given rubber, cavitation instability should not depend
at the center of a sphere of nonlinearly elastic materialipon the selection of strain energy functions. Cavita-
under surface tractions or displacements. tion instability either does or does not exist. However,
An alternative interpretation of cavitation instability according to Hogan and Polignone [22], cavitation in-
in terms of the growth of a pre-existing microvoid has stability exists if a lower-order strain energy function is
been given by Horgan and Abeyaratne [21]. An excel-used whereas cavitation instability does not exist when
lent review of cavitation in nonlinearly elastic solids a supposedly more accurate higher-order strain energy
can be found in Horgan and Polignone [22]. For cavi-function is used. From this viewpoint, the mathemati-
tation in elastic-plastic materials, Huaetal.[23] and  cal framework to treat cavitation instability must be re-
Tvergaardet al. [24] examined cavitation instabilities examined or re-interpreted to reflect the physical reality.
in Mises materials under both spherically symmetricTherefore, a strain failure criterion at large strains due
and axisymmetric conditions. Hou and Abeyaratne [25}to breaking of molecular chains is adopted in this pa-
examined the cavitation in elastic and elastic-plastigoer to investigate cavitation instability in rubber when
solids under non-symmetric loading and presented cavhigher-order strain energy functions are used.
itation criteria in terms of the principal true stresses for
neo-Hookean materials and elastic-plastic power-lawy ¢ onstitutive modeling of rubber

materials. Chang and Pan [15] studied the load-carrying ot 5 consider that a material point with the initial
capacity of rubber-modified plastics with pre-existing catesjan coordinates is displaced to a new position
voids in rubber particles with consideration of rubber,,ih, the Cartesian coordinatesin an isotropic elastic

failure at large strains. Williams and Schapery [26], 4jig. The deformation gradient tensor is defined as
Gent and Wang [27] and Lazzeri and Bucknall [6, 7]

analyzed cavitation in rubber from the viewpoint of AX;

energy release rate. Fij = X (1)
Gent and Lindley [17] obtained the critical remote .

surface traction for a CaVity in an |nf|n|te|y thick Spher— and the left Cauchy_Green strain tensor is defined as

ical shell under radial traction conditions with the strain

energy functions for neo-Hookean materials and mod- B = FixFik. )

ified Mooney-Rivlin materials. Their critical surface

radial tractions are in the order of the elastic modulusrne invariants of the tensd;; are

and agree with those observed in the internal rupture of

a thin rubber layer between two metal cylinders under I, = B; A3)
tensile loads. As indicated by Gent and Lindley [17],

the critical tractions are slightly lower with consid- l, = }(Bii Bjj — Bi; Bij) (4)
eration of the failure of rubber at stretch ratios be- 2

tween 4 and 10 under biaxial stretching conditions. 1
The theoretical framework of Ball [20] and Horgan and 3= =8ijk€pqrBip Bjq Bur ()
Abeyaratne [21] have provided insight into cavitation
in nonlinearly elastic materials. However, the resultswhereg;ji is the permutation symbol.
of Hogan and Polignone [22] indicate that from the Itis generally accepted that under static loading con-
mathematical viewpoint, the critical radial tractions for ditions, rubbers are considered as isotropic hyperelastic
the cavity become unbounded for Mooney-Rivlin ma-incompressible materials. The strain energy function
terials or nonlinearly elastic materials characterized byper unit undeformed volume for isotropic hyperelastic
higher-order strain energy functions. materials is generally expressed as a function of the
One can imagine that for a given set of experimentathree invariants|y, |, andls. The third invariant 3 is
stress-stretch ratio data under various loading condiidentically equal to 1 because of the material incom-
tions such as uniaxial tensile, biaxial tensile and sim-pressibility. Therefore, the strain energy function per
ple shear loading conditions, a high-order strain energynit undeformed volume for isotropic hyperelastic in-
function should have more flexibility to fit the exper- compressible materials can be expressed in termhs of
imental data under these various loading conditionsand|, as
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W = W(ly, I5). (6) 1200+

Various forms of strain energy functions for Equation 6
have been suggested for incompressible materials. 100.04

We adopt a third-order strain energy function inves-
tigated by James, Green and Simpson [29] and Jame
and Green [30]:

80.0

W = Cyo(l1 — 3) + Cor(l2 — 3)+ Caa(l1 — 3)(12 — 3)
+Cao(l1 — 3)? + Cao(l1 — 3)°. (7

60.0

lied Stress (MPa)

Note that Equation 7 reduces to the strain energy func &! 400+
tion for Mooney-Rivlin materials wheiC1; =Cyo= )
C30=0 and reduces to that for neo-Hookean materials
whenCy; = Cy3 =Cy0=C3p = 0. The components of 20.0
the Cauchy stress;;, can be derived froriV as [31]

oW oW 0.0
oij = —p8ij +2-—Bj —2—(B)ij, (8) 1
alq ala

Stretch Ratio

Wherep IS th? hydrOStatlc pr_essure. . Figure 1 The stresses as functions of the stretch ratio for three non-
The material ConStan@ii n Equatlon 7 are deter- linearly elastic materials. Curves NH, MR, and JGS represent the NH,

mined by fitting to the test data. Here, we consider avr, and JGS materials under uniaxial tensile loading conditions, re-

rubber with the material constants [32, 33] spectively. Curves BNH, BMR, and BJGS represent the NH, MR, JGS
materials under equal biaxial tensile loading conditions, respectively.

Ci0 = 1.008x 101 MPa (9)
Cor = 1.612x 101 MPa (10)  scription of the material behavior at large strains under
3 multiaxial loading conditions. The selection of the three
C11=1.338x 10" MPa (11) representative rubbers with these material constants is
Cyo = 6.206x 104 MPa (12) loinvestigate the cavitation phenomena in these rub-
bers with and without consideration of rubber failure at
Cao = 6.206 x 1077 MPa (13) large strains. In the following, we denote the material

with the material constants in Equations 9 to 13 as the

We also consider a Mooney-Rivlin material with the JGS material. We denote the Mooney-Rivlin material
constants [34] with the material constants in Equations 14 to 16 as
the MR material. We denote the neo-Hookean material
Ci0 = 0.550 MPa (14) with the material constants in Equations 17 and 18 as

the NH material.

Co1 = 0.138MPa (15) In Fig. 1, the applied stresses as functions of the

Cy1 = Cyo = Cg9 = 0. (16)  stretch ratio under uniaxial tensile loading and equal
biaxial tensile loading for the JGS, MR, and NH mate-

In addition, we consider a neo-Hookean material with12!S are plotted. In the figure, the curves for the JGS,

the constants MR, and NH materials under uniaxial tensile loading
are denoted by JGS, MR, and NH, respectively. The
Ci0 = 0.5MPa (17) curves for the JGS, MR, and NH materials under equal
biaxial tensile loading are denoted by BJGS, BMR, and
Coii=C11=Cypp=Cz=0. (18)  BNH, respectively. Since the material elements on the

void surface are subject to equal biaxial loading condi-
For the neo-Hookean material, the only nonzero contions (due to spherical symmetry), curves BJGS, BMR,
stantCyg is related to the shear modulus of rubk@®r, and BNH in Fig. 1 represent the constitutive relations
asCyo=G/2. The values ofs for rubbers generally for these material elements and therefore have impor-
lie between 0.2 and 1.0 MPa. tant implications on the modeling of void expansion
Note that the material constar®g are determined in rubber particles. It should be noted that the neo-
by fitting to the experimental data. When the defor-Hookean material (the NH material) has almost the
mation is larger than the deformation range of the exsame response at large stretch ratios under both uni-
periment, unrealistic stress values at large strains caaxial and biaxial tensile loading conditions, as shown
be predicted from these material constants. These comy curves NH and BNH. The JGS and MR materials
stants may differ for the same material by fitting to theare very stiff under equal biaxial loading conditions. For
experimental data for different deformation ranges andexample, curves BMR and BJGS in Fig. 1 show that the
loading conditions. However, a higher-order strain en-stresses at the stretch ratie- 4 are about 80 MPa and
ergy function should generally give a more accurate de120 MPa, which are larger than the yield stresses of the
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typical plastic matrices in which the rubber particlesare We consider a spherical coordinate system with the

embedded for toughening. The stresses increase vetliree coordinateR, 9, andg. The origin of the spherical

sharply when the stretch ratiobecomes larger than 4. coordinate system is located at the center of the void.
Due to symmetry, the stretch ratio in the hoop direction,
A, can be simply represented as

3. Governing equations

We now examine void expansion in rubber particles un-
der spherically symmetric loading conditions. Fig. 2a
depicts the undeformed configuration of a spherical
rubber particle with a void. The rubber particle has thewherer andR represents the radial coordinate of a ma-
initial external radiuso and the initial void radius,.  terial point before and after deformation, respectively.
Fig. 2b schematically shows the deformed configuraDue to symmetry, the off-diagonal component8aire
tion of the rubber particle. In Fig. 2b, the external ra-zero. The diagonal components®are denoted aBR,
dius become®, and the void radius becom& after By, andB,. From Equations 1 and 2, we have

a dead-load radial tractiopg is applied at the outer

boundary. The dead-load tractign is related to the B, — B, — A2 21)
radial stresgr at R= Ry based on the deformed con- 0 4 ’

figuration as

R

The incompressibility gives
2
r
wR=R)=m(fe) . a9 ls = BaByBy = 1 (22)
Then, Bg can be found, by using (21) and (22), as

as shown in Fig. 2b.

Br =A% (23)

Substituting Equations 21 and 23 into Equation 8 gives
the relations between the stresses and the stretch ratio
A as

Rubber

I'p or = —p — 4C11° + (—=2Co1 + 6C11)A* + 24C50
4+ (=72C30 + 8C20))»_2 + (—6C11 + 54C39
+2C10 — 12C50)2~* + (4C11 + 24C50)1~°

+ (4C20 — 36C30)A 8 + 6C0r 2 (24)

09 = —P + (2C11 + 24C30)A° + (—72Cz0 + 8C20)1*

(a) Undeformed Configuration + (—6C11 + 54C30+ 2C10 — 12C0)22 + 24C0
+ (4C20 — 36C30 — 2Co1 + 6C11)A 2

+(6C30 — 2C1)A~° (25)

0y = 0p. (26)

Here p will be determined by the equilibrium equation

and the boundary conditions, and is a functionFof
The off-diagonal stress components are equal to 0.

We now begin to solve for the stress distribution
within the rubber particle. The equilibrium equation
is

d 2
£+ﬁ(UR_GG)=O- (27)

The boundary conditions require

(b) Deformed Configuration

or=0 at R=R,. (28)

Figure 2 A void in a spherical rubber particle under radial dead-load o . . .
traction po. (a) undeformed configuration, (b) deformed configuration. Substituting Equations 24 and 25 into 27 gives
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From Equation 34 ands =2Cio, we obtain pg =
2.5 MPa andk =1/3 MPa for the NH material with
the material constants in Equation 17.
4
+2Co1 — 6C11)A" + (—6C11 + 54Cs0 It should be noted that the bifurcation model of cav-
+2C10 — 12C50)A2 + (—4C0 + 36C30 itation can be successfully used to predict the critical
traction for the internal rupture of the rubber observed
-2
—2Co1 + 6C12)A™" + (6C11 — 54Cs0 by Gent and Lindley [17] when the rubber is modeled
— 2C10 + 12Co0)A ™ + (—18Czp — 6C11)1 7 as a neo-Hookean material. The criterion for materials
_3 _12 with strain energy functions to have afinite critical trac-
+(—4C20+ 36C30)2 " — 6Ca0r 7} (29) tion is given in Chou-Wang and Horgan [35], Polignone
, , ... and Horgan [36], and Horgan and Polignone [22]. For
The volume conservation due toincompressibility giveSaxample, when the strain energy function of the rubber
5 s 3 3 is characterized by that of the Mooney-Rivlin materi-
RE—Ry=r"—rg. (30)  als or other higher-order strain energy functions [22],
the critical traction becomes unbounded. However, the
Therefore, the stretch ratib in Equation 29 can be Mooney-Rivlin and other higher-order strain energy

2
JR-R {(6C11 + 24C50)1% + (—=72C30 + 8C20

expressed as functions are considered to give more accurate de-
scription of the constitutive behavior of rubber at large

R R strains. Therefore, it seems that a modification to the

b= T (31) bifurcation approach is needed to reflect the fact that

RS — R34 r3)* g .
( Ry + b) rubber cannot be extended to infinite stretch ratio.

SubstitutingR = Ry into Equation 30 gives the expan-
sion ratio of the outer radius of the rubber particle as

4. Results
Ro |: ry 3 R, 373 Because a rubber material element cannot be extended
—=|1- (—> + (—) } (32) to infinite stretch ratio, a failure mechanism at large
o o o strains is considered. Note that the material elements

on the void surface of the rubber particle are under
Note that all the length scales are normalizedddyere.  plane stress, equal biaxial loading conditions. For in-
Also note that in Equation 32, the initial radius of the vestigation of the effects of a failure mechanism on
void ry/ro is given as an input. For a given final void cavitation, we adopt a simple failure criterion such that
radiusRy /o, the governing equation (Equation 29) can rupture occurs when the stretch raticeaches a critical
be integrated from the deformed inner radRs=R,  value under plane-stress, equal biaxial stretching con-
with the initial value ofog =0 to the deformed outer ditions. Note that the failure stretch ratios are different
radiusRy which can be determined by Equation 32. At for different rubbers. The failure stretch ratio depends
eachR, p can then be determined from Equation 24.upon the degree of cross-linking, stretch rate, and tem-
Oncepis determinedg, can be determined from Equa- perature. The values of the stretch ratio at failure in
tion 25. The dead-load tractiopp at R=Ry can be  equibiaxial tension for vulcanised natural rubber are

obtained from Equation 19. between 3% and 40 [6].
For a neo-Hookean material with the strain energy Here we just take. =4 as the failure stretch ratio
function for the three rubbers to explore the implications of a
failure criterion on cavitation phenomenon. Therefore,
W = E(ll —3), (33) when the stretch ratib of the material elements on the
2 void surface of the rubber particle reaches the critical

N _ _ value of 4, the rubber material elements fail. In the pre-
the critical dead-load traction can be obtained (Gengyisting void model of cavitation, no limit is assumed

and Lindley [17] and Ball [20]) as on the maximum strain that the material can experience.
Therefore, for an initially infinitesimal void growing to
Por = % (34) @ finite size, the stretch ratios of the material elements
2 on the void surface become infinite. Now, with consid-

eration of a simple strain failure criterion, we exam-
Also, Horgan and Polignone [22] obtained the relationine the cavitation phenomena in the three rubbers char-
between the applied traction and the current void radiugcterized by different strain energy functions. The re-
by a Taylor expansion as sults for the neo-Hookean material, the Mooney-Rivlin
material and the JGS material are shown in Figs 3-5,
8 s respectively.
Po = Per + k(g) +0(Rp). (35) For the neo-Hookean material with the material con-
stants in Equations 17 and 18, the dead-load tractions
where (po) as functions of the normalized current void size
(Rp/ro) are shown as dash curves in Fig. 3 for various
2 normalized initial void sizesrf/rg). Curve A repre-
k= §(pcr - 26). (36)  sents Equation 35 which is an approximate relation for
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Figure 3 The relation between the applied tractips and the current

void sizeRy, o for a neo-Hookean material. The dashed curves represent 9Ure 5 The relation between the applied tractipp and the current
the expansion ratios of the void with different initial sizes under dead-"0!d SiZ€Ro/o for a JGS material characterized by a third-order strain
gnergy function. The dashed curves represent the expansion ratios of the

void with different initial sizes under dead-load traction conditions. The
solid curve represents the critical tractions for various initial void sizes
with consideration of rubber failure at=4.

load traction conditions. Curve A represents an approximate relation fo
an initially infinitesimal void with no consideration of rubber failure.
Curve B represents the critical tractions for various initial void sizes
with consideration of rubber failure at=4.

curve, Curve B, can be drawn by connecting the critical
points, corresponding to the failure of the void surface
material, of all dash curves for various initial void sizes.

In other words, curve B represents the critical tractions
for various initial void sizes.

When we examine the trend of curve B, we can iden-
tify that the critical traction for an initially small void is
2.0 MPa with consideration of the failure criterion. This
critical traction represents the critical condition for an
infinitesmal void when the rubber on the void surface
fails at the large stretch ratio. This value is lower than
2.5 MPa predicted by the bifurcation model of cavita-
tion. Also, curve B shows that ag/rp approachesto 1,
the tractionp, becomes 0 aR,/ro = 4. This can be ex-
plained by considering a spherical rubber shell with
an infinitesmal thickness subject to radial expansion.
The thin shell fails when the stretch ratio of the rubber
reaches the critical value of 4 By/ro = Ry/ro=4.

For the Mooney-Rivlin material with the material
constants given in Equations 14 to 16, the dead-load

Ry / 1o tractions o) as functions of the normalized current
Figure 4 The relation between the applied tractipm and the current void SI.ZE Ro/To) ar-e ShOWI’] as anh- curves in Fig. 4
void sizeRy/ro for a Mooney-Rivlin material. The dashed curves rep- for various normahzed II?]I’[I&| VOId, ,Slzesb(/rp)' FOI‘
resent the expansion ratios of the void with different initial sizes underthe Mooney-Rivlin material, the critical traction is un-
dead-load traction conditions. The solid curve represents the critical racbounded according to the bifurcation analysis in [22].
tions for various initial void sizes with consideration of rubber failure at As shown in Fig. 4, when the normalized initial void
A=A, sizery/ro becomes small, the dash curves tend to the

vertical lineR,/ro = 0. Therefore, an infinitesimal void

an initially infinitesimal void. As shown in Fig. 3, when cannot suddenly grow in the Mooney-Rivlin material
the normalized initial void size,/ro approaches to 0, when no failure criterion is considered. As for the
the dashed curves approach to curve A. When the straineo-Hookean material, when the strain failure crite-
failure criterion ath = 4 is considered, a critical point rion ati =4 is considered, a solid curve can be drawn
ateach dash curve in Fig. 3 can be found to representthia Fig. 4 to represent the critical tractions for various
critical traction for the given initial void size. A solid normalized initial void sizes, where the stretch ratio

Po (MPa)
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of the void surface material element meets the failure
criterion atA =4. As the normalized initial void size
becomes small, the solid curve approaches to a critical Rubber
traction at 41 MPa.

For the JGS material characterized by the material
constants in Equations 9 to 13, the dead-load tractions
(po) as functions of the normalized current void size
(Rp/ro) are shown as dash curves in Fig. 5 for vari-
ous normalized initial void sizesy/ro). For the JGS
material, the critical traction should be unbounded ac-
cording to the bifurcation analysis in [22]. As shown
in Fig. 5, when the normalized initial void sizg/ro
becomes small, the dash curves tend to the vertical
line Ry/ro=0. Therefore, an infinitesimal void can-
not suddenly grow in the JGS material when no failure
criterion is considered. As for the neo-Hookean and
Mooney-Rivlin materials, when the strain failure crite-
rion atA =4 is considered, a solid curve can be drawn
in Fig. 5 to represent the critical tractions for various
normalized initial void sizes. As the normalized initial
void size becomes small, the solid curve approaches t
a critical traction near.® MPa.

The dead-load tractiongy as functions of the nor-
malized current void siz&,/rq are shown in Figs 3-5
forthe NH, MR, and JGS materials, respectively. When
we design for the maximum dead-load radial traction
for a spherical thick shell with consideration of the fail-
ure criterion, the best design will be the cases with the
normalized void sizey/ro from 0.4 to 0.7, where the
dead-load radial tractions are maximized.

For a small void in the rubber particle, when the outer
radius increases, the stretch ratio of the void surface el
ement increases and meets the failure criterion. Thet
a thin layer of the surface element fails and loses the
load-carrying capacity. As the radial displacement con-
tinues to increase, the stretch ratio of the next thin layet
of rubber mcrgases and fails. V_Vhen the r_adlal dISpIaceFigure 6 A void in a spherical rubber particle under radial traction.
ment further increases, more inner portion of the rub-a) undeformed configuration, (b) deformed configuration. In (b), the
ber particle fails and loses the load-carrying capacitystretch ratiox equal to the failure stretch ratio of 4 at the deformed
When all the rubber material elements are stretched an@diusR:. The inner portion of the particle has the stretch ratio larger
failed, the particle completely loses the load-carrying S22 R0 25 28 M SR e e renents
capacity and the radial traction be_comes zero. This conge yndeformed radius correspondingRe.
cept of gradual loss of load-carrying capacity of mate-
rial elements or structures has been adopted in fracture
mechanics and material modeling research, for exammaterial with the current radiuR less tharRs is larger
ple, see Jeong and Pan [14] on near-tip deformatiothani = 4. When the stretch ratio is larger or equal to 4,
pattern in rubber-modified epoxies and Tvergaard anthe rubber material fails. Therefore the inner portion of
Needleman [37] on ductile fracture in tensile bars. Ofthe particle has failed and has no load-carrying capac-
course, we assume a highly idealized deformation moddy. The load will then be carried by the outer portion of
here because a spherically symmetrical model is needdtie particle. Consequently, the load-carrying capacity
to explore the post-bifurcation behavior of the rubberof the rubber particle at the curreRg can be obtained
particle. We can simulate numerically the small voidfrom the load-carrying capacity of the particle with the
growth model as discussed above. However, there igitial void radiusr; which is the undeformed radius
another way to get the post-bifurcation behavior of thecorresponding td; .
rubber particle with an infinitesmal void. Therefore, the dead-load traction of the rubber parti-

Fig. 6 shows the undeformed and deformed config<cle with an infinitesmal void should follow the curves
urations of the rubber particle. In the figure, the rubberfor the critical tractions for various initial void sizes
particle deformed radiuR, becomes sulfficiently large shown in Figs 3-5. In fact, Curve B in Fig. 3 and the
so that the stretch ratio of the inner portion of the rub-solid curves in Figs 4 and 5 represent the plotpgi$
ber particle is larger than the failure stretch ratie 4.  as functions ofR; /r, for the rubber particle with an
Denote the deformed radius of the material with theinfinitesmal void. Based on the curves for the criti-
failure stretch ratia. = 4 asR;. The stretch ratio of the cal tractions and the incompressibility condition, the

(b) Deformed Configuration
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9.0 - pacity and can be viewed as an extremely soft material
] 1GS at the stretch ratios larger than the failure stretch ratio.
8.0 Therefore, for both lower-order and higher-order strain
] energy functions, cavitation stress exists when a failure
7.0 MR criterion is assumed at a finite stretch ratio.
] From the mathematical viewpoint, Equation 2.41 for
6.0 7 cavitation stresgy, in Horgan and Polignone [22] can
] be used to explain the numerical results shown in this
504 paper. However, in order to make a direct use of the
] equation, the strain failure criterion should be modified
4.0 slightly. In our strain failure criterion, the load-carrying
] capacity drops from a finite value to zero at the failure
301 stretch ratio. However, in the modified strain failure
] NH criterion, the load-carrying capacity of the rubber in-
creases to the maximum and then gradually decreases
to zero near the failure stretch ratio so that the equa-
tion in Horgan and Polignone [22] can be integrated.
This gradual loss of the load-carrying capacity is quite
similar to that in the cohesive zone model extensively
used in fracture mechanics (for example, see Kanninen
Ry/ 1 and Pope_lar [38]). T_he cavitgtion stress according to
the equation is obtained by integrating from 1 to in-
Figure 7 The dead-load tractiors for the particle with aninfinitesimal ~ finity. With the failure criterion, the cavitation stress is
void are plotted as functions of the normalized particle $¢ro for  obtained by integrating from 1 to a finite failure stretch
the neo-Hookean, MR and JGS materials with consideration of r“bbefatio. Therefore, for the neo-Hookean material, the cav-
failure ath = 4. itation stress 2.0 MPa which is less than the value of
2.5 MPa without consideration of the failure criterion.

) o . \When the failure stretch ratio increases to infinity, the
dead-load tractions for an infinitesmal void are plottedcayitation stress without consideration of the failure
as functions of the normalized particle si®g/ro for  criterion is recovered as indicated by the equation. For
the NH, MR and JGS materials in Fig. 7. Note that thepjgher-order strain energy functions, the values of cav-
normalized deformed particle si#®/r, is used as the jtation stresses will depend on failure stretch ratios and
a_lbsmssa. It is easy to use the mcompressmlllty condixtrain energy functions. For the MR and JGS materials,
tion to change the plot fromp as a function 0R,/rot0 the cavitation stresses are at 4.1 and 3.0 MPa, respec-
Po as a function oR, /1o, as in most cavitation research tjyely. Note that the biaxial stretching behaviors for the
works. However, we plopo as a function oR,/ro be- MR and JGS materials are much stiffer than that for the
cause the inner portion of the particle fails and carrie,eg-Hookean material, as shown in Fig. 1. Therefore,
no load. Then it makes sense to pl@fas a function  the cavitation stresses for the MR and JGS materials are
of Ro/ro. Nevertheless, the plots as functionsRf'ro  |arger than that for the neo-Hookean material with the
are quite similar to those as functionsif/ro. same failure stretch ratio. This can also be explained by

As shown in Fig. 7, these curves represent the poste equation qualitatively.

bifurcation behaviors for the rubber particle containing |, this paper, no physical dimension is given to the
an infinitesmal void with consideration of the failure jnitial void sizer,,. Surface energy becomes important
criterion. Note that the dead-load tractions approach t@s the physical dimension of the void becomes small. As
finite values wherR,/r, approaches to 1 (d®/ro ap-  shown in Gent and Wang [27], the critical stretch ratio
proaches to 0) as |nd|cated by the numerical resultsdependS upon the physical dimension of the void (or
The dead-load tractions approach to zer®g&o ap-  crack). However, their results show that when the void
proaches to the failure stretch ratie=4. As shown in  gjze decreases, the critical stretch ratio approaches to a
the the figure, there are maximum dead-load tractiongonstant. Here we have selected the critical stretch ratio
for the three materials. Beyond these maximum deadys 4. Other values can be selected. Even we can select
load tractions, no solution can be found according tahe critical stretch ratio as a function of the physical

this rate-independent, quasi-static approach. dimension of the void. But the qualitative results will
The numerical results shownin Fig. 7 indicate the exe the same as those presented here.

istence of cavitation stress for the three materials with

consideration of the failure criterion. The existence of

cavitation stress can be explained by the bifurcatiorb. Conclusions

approach of Horgan and Abeyaratne [21]. Horgan andn this paper, we investigate the spherical void ex-

Polignone [22] indicate that the existence of cavitationpansion in spherical rubber particles under dead-load
stress depends upon the behavior of the strain energyaction conditions. Spherical symmetry is assumed to
function at large stretch ratios. When the material issimplify the governing equations in order to gain qual-

sufficiently soft at large stretch ratios, cavitation stresstative understanding of the cavitation phenomenon.
exists. When a failure criterion is assumed at finiteWe adopt a simple strain failure criterion for rubber

stretch ratios, the material has zero load-carrying caat large strains. When a simple strain failure criterion is

Py (MPa)

2.0

0.0 +— T T \
1.0 2.0 3.0 4.0 5.0
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employed, critical cavitation stresses of the order of thas.

shear modulus exist consistently in nonlinearly elastic
materials with different strain energy functions, in con-*
trast to the results obtained without consideration of a,,
failure mechanism.

21.
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